Alkylation of Single and Double Strand Dna by Peptide Nucleic Acids
نویسندگان
چکیده
Title of Document: TARGET ALKYLATION OF SINGLE AND DOUBLE STRAND DNA BY PEPTIDE NUCLEIC ACIDS Yang Liu, Doctor of Philosophy, 2011 Directed By: Professor Steven E. Rokita, Department of Chemistry and Biochemistry Quinone methides (QMs) generated in vivo can alkylate DNA and function as anti-cancer drugs. Delivery of QMs to target DNA is necessary to reduce the side effects caused by indiscriminate reaction. Previous, DNA was conjugated with a QM and was successfully used to deliver this QM to complementary DNA sequences. Peptide nucleic acids (PNAs) conjugates of QM are now being developed for in vivo application since PNA binds to its complementary DNA or RNA and PNA resists degradation by nucleases and proteases. The PNA1-QMP1 conjugate is capable of alkylating more than 60% of a complementary ssDNA when added at nearly stoichiometric quantities. No alkylation was observed if non-complementary DNA was treated with the conjugate. PNA1-QMP1 can alkylate a non-complementary DNA only when both the PNA and DNA target bind to a template strand. When no target sequences were present in solution, QM can react with nucleophiles from PNA1 and generate PNA1-QM1 self adduct. ssDNA can be alkylated by PNA1-QM1 self adduct with a 40% yield. The self adduct can survive after an incubation for 7 days in aqueous solution and preserve half of its original ability to alkylate complementary DNA. The reversibility and stability of the self adduct suggest that it can be used in cells. ssRNA can also be recognized and modified by PNA conjugates with a similar yield as earlier demonstrated with ssDNA. A PNA1-QM1 self adduct may also function as a telomerase inhibitor by alkylating RNA within telomerase. Polypyrimidine PNAs were prepared to bind to the major groove of duplex DNA selectively and expand the potential targets from single to double strand DNA. A cytosine-rich PNA recognized dsDNA and delivered an electron-rich QMP2 to its target sequences. The polypurine strand within a target dsDNA was alkylated at 37°C with a yield of 26%. PAN-QMP2 also showed strong selectivity toward its fully matched dsDNA over one base mismatch in the triplex recognition site. Successful delivery of a QMP to target single and double strand DNA by PNAs confirms that the use of PNA in vivo to target pre-selected sequences is feasible. TARGET ALKYLATION OF SINGLE AND DOUBLE STRAND DNA BY PEPTIDE NUCLEIC ACIDS
منابع مشابه
Cellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid
Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...
متن کاملEffect of Helium-Neon Laser and Sodium Hypochlorite on Calf Thymus Double-Stranded Deoxyribonucleic Acid Molecule: An in Vitro Experimental Study
Introduction: Low-energy helium-neon (He-Ne) laser beam lightis used in combination with sodium hypochlorite (Na2HOCl3) for clinical purposes. Regarding this, the present study aimed to investigate the effect of He-Ne laser (632.8 nm) and sodium hypochlorite on the calf thymus double-stranded deoxyribonucleic acid (ctdsDNA) molecule. Materials and Methods: For the purpose of the study, ctdsDNA...
متن کاملStrand invasion of extended, mixed-sequence B-DNA by gammaPNAs.
In this communication, we show that peptide nucleic acids (PNAs) with lengths of 15-20 nucleotides, when preorganized into a right-handed helix, can invade mixed-sequence double-helical B-form DNA (B-DNA). Strand invasion occurs in a highly sequence-specific manner through direct Watson-Crick base pairing. Unlike the previously developed double-duplex invasion strategy, which requires simultane...
متن کاملDeoxynucleic Guanidine/Peptide Nucleic Acid Chimeras: Synthesis, Binding and Invasion Studies with DNA
A fully automated solid-phase synthetic procedure for incorporation of positively charged guanidinium linkages into otherwise neutral PNA sequences has been employed. These DNG/PNA chimeras form [(DNG/ PNA)2‚DNA] triplexes upon binding to single strand or duplex DNA (with accompanying D-loop for the latter). The [(DNG/PNA)2‚DNA] triplexes of DNG/PNA T10, with DNA dA10, are more stable than DNA‚...
متن کاملMeasurement of steady-state kinetic parameters for DNA unwinding by the bacteriophage T4 Dda helicase: use of peptide nucleic acids to trap single-stranded DNA products of helicase reactions
Measurement of steady-state rates of unwinding of double-stranded oligonucleotides by helicases is hampered due to rapid reannealing of the single-stranded DNA products. Including an oligonucleotide in the reaction mixture which can hybridize with one of the single strands can prevent reannealing. However, helicases bind to single-stranded DNA, therefore the additional oligonucleotide can seque...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011